CCRT: Categorical and Combinatorial Representation Theory.

From combinatorics of universal problems to usual applications.
G.H.E. Duchamp

Collaboration at various stages of the work and in the framework of the Project
Evolution Equations in Combinatorics and Physics :
Karol A. Penson, Darij Grinberg, Hoang Ngoc Minh, C. Lavault, C. Tollu, N. Behr, V. Dinh, C. Bui,
Q.H. Ngô, N. Gargava, S. Goodenough.

CIP seminar,
Friday conversations:
For this seminar, please have a look at Slide CCRT $[\bar{n}]$ \& ff .

Goal of this series of talks

The goal of these talks is threefold
(1) Category theory aimed at "free formulas" and their combinatorics
(2) How to construct free objects
(1) w.r.t. a functor with - at least - two combinatorial applications:
(1) the two routes to reach the free algebra
(2) alphabets interpolating between commutative and non commutative worlds
(2) without functor: sums, tensor and free products
(3) w.r.t. a diagram: limits
(3) Representation theory: Categories of modules, semi-simplicity, isomorphism classes i.e. the framework of Kronecker coefficients.
(9) MRS factorisation: A local system of coordinates for Hausdorff groups.

CCRT[12] Noncommutative gradings, language theory and free products.
(1) Coproducts

Free structures without functors.

Universal problem without functors: Coproducts (recall CCRT[8-9]).
All here is stated within the same category \mathcal{C}.

Figure: Coproduct (jx, jy; $X \amalg Y$).

$$
\begin{align*}
& (\forall(f, g) \in \operatorname{Hom}(X, Z) \times \operatorname{Hom}(Y, Z)) \\
& (\exists!h(f ; g) \in \operatorname{Hom}(X \coprod Y, Z)) \\
& (h(f ; g) \circ j x=f \text { and } h(f ; g) \circ j Y=g) \tag{1}
\end{align*}
$$

Coproducts: Sets

All here is stated within the category Set.

Figure: Coproduct ($\left.j_{X}, j_{Y} ; X \sqcup Y\right)$.

$$
\begin{align*}
& (\forall(f, g) \in H o m(X, Z) \times \operatorname{Hom}(Y, Z)) \\
& (\exists!h(f ; g) \in H o m(X \sqcup Y, Z)) \\
& (h(f ; g) \circ j X=f \text { and } h(f ; g) \circ j Y=g) \tag{2}
\end{align*}
$$

Coproducts: Vector Spaces or modules

All here is stated within the same category $\mathbf{k}-\operatorname{Vect}$ (or $\mathbf{k}-\operatorname{Mod}$ if \mathbf{k} is a ring).

Figure: Coproduct $(j x, j y ; X \oplus Y)$ here $h(f ; g)=f \oplus g$.

$$
\begin{align*}
& (\forall(f, g) \in \operatorname{Hom}(X, Z) \times \operatorname{Hom}(Y, Z)) \\
& (\exists!h(f ; g) \in \operatorname{Hom}(X \oplus Y, Z)) \\
& (h(f ; g) \circ j X=f \text { and } h(f ; g) \circ j Y=g) \tag{3}
\end{align*}
$$

Coproducts: \mathbf{k} - CAAU

All here is stated within the same category $\mathbf{k}-\mathbf{C A A U}$.

Figure: Coproduct $\left(j x, j_{Y} ; X \otimes Y\right)$ here $h(f ; g)=f \otimes g$.

$$
\begin{align*}
& (\forall(f, g) \in \operatorname{Hom}(X, Z) \times \operatorname{Hom}(Y, Z)) \\
& (\exists!h(f ; g) \in \operatorname{Hom}(X \otimes Y, Z)) \\
& (h(f ; g) \circ j X=f \text { and } h(f ; g) \circ j Y=g) \tag{4}
\end{align*}
$$

Coproducts: Augmented $\mathbf{k}-\mathbf{A A U}$

All here is stated within the same category Augmented $\mathbf{k}-\mathbf{A A U}$.

Figure: Coproduct $\left(j x, j_{Y} ; X * Y\right)$ here $h(f ; g)=f * g$.

$$
\begin{align*}
& (\forall(f, g) \in \operatorname{Hom}(X, Z) \times \operatorname{Hom}(Y, Z)) \\
& (\exists!h(f ; g) \in \operatorname{Hom}(X * Y, Z)) \\
& (h(f ; g) \circ j X=f \text { and } h(f ; g) \circ j Y=g) \tag{5}
\end{align*}
$$

MATHEMATICS

Home

Questions
Tags

Users
Unanswered

How to construct the coproduct of two (non-commutative) rings
 Asked 7 years, 2 months ago Active 1 year, 9 months ago Viewed 3 k times

Ask Question

How to construct/describe the coproduct of two - not necessarily commutative - rings R and S ?
20
This in category Ring having as objects rings with a unit and as arrows unitary ringhomomorphisms.
I thought of firstly constructing monoid M as coproduct of the underlying monoids $U(R)$ and $U(S)$ where $U:$ Ring \rightarrow Mon denotes the forgetful functor, and then secondly taking the ring $\mathbb{Z}[M]$ free over monoid M, but still have my doubts. If the rings have finite coprime characteristics then the coproduct should be the trivial ring, so something is wrong.

Can you give me a description of the coproduct (including its injections)? Thank you in advance.

The MSE question

(1) We now turn to MSE question 625874
"How to construct the-coproduct of two non commutative rings" https://en.wikipedia.org/wiki/Category_of_rings https://math.stackexchange.com/questions/625874
(2) We address the question for $\mathcal{C}=$ Ring, the category of rings.
(3) For R_{1}, R_{2} two rings, we start with $T\left(R_{1} \oplus R_{2}\right)$
(9) So, with two morphisms $f_{i}: R_{i} \rightarrow Z, i=1,2$, we have

The MSE question/2

(3) Rings are \mathbb{Z}-algebras. In order to get the tensors more readable, we color use colors (red for R_{1}, blue for R_{2}). The tensor algebra $T\left(R_{1} \oplus R_{2}\right)$ reads

$$
\begin{align*}
& \mathbb{Z} \oplus R_{1} \oplus R_{2} \\
& \oplus\left(R_{1} \otimes_{\mathbb{Z}} R_{1}\right) \oplus\left(R_{1} \otimes_{\mathbb{Z}} R_{2}\right) \oplus\left(R_{2} \otimes_{\mathbb{Z}} R_{1}\right) \oplus\left(R_{2} \otimes_{\mathbb{Z}} R_{2}\right) \\
& \oplus\left(R_{1} \otimes_{\mathbb{Z}} R_{1} \otimes_{\mathbb{Z}} R_{1}\right) \oplus\left(R_{1} \otimes_{\mathbb{Z}} R_{1} \otimes_{\mathbb{Z}} R_{2}\right) \oplus\left(R_{1} \otimes_{\mathbb{Z}} R_{2} \otimes_{\mathbb{Z}} R_{1}\right) \\
& \oplus\left(R_{1} \otimes_{\mathbb{Z}} R_{2} \otimes_{\mathbb{Z}} R_{2}\right) \\
& \oplus\left(R_{2} \otimes_{\mathbb{Z}} R_{1} \otimes_{\mathbb{Z}} R_{1}\right) \oplus\left(R_{2} \otimes_{\mathbb{Z}} R_{1} \otimes_{\mathbb{Z}} R_{2}\right) \oplus\left(R_{2} \otimes_{\mathbb{Z}} R_{2} \otimes_{\mathbb{Z}} R_{1}\right) \\
& \oplus\left(R_{2} \otimes_{\mathbb{Z}} R_{2} \otimes_{\mathbb{Z}} R_{2}\right) \\
& \oplus \ldots \tag{6}
\end{align*}
$$

(6) We see that tensors are of type

$$
\{1, r, b, r r, r b, b r, b b, r r r, r r b, r b r, r b b, b r r, b r b, b b r, b b b\}
$$

(7) Now comes to the rescue the new noncommutative grading (see paragraph "G-graded rings and algebras", in [24]).

The MSE question/3

(8) In [24] algebras $\mathcal{A}=\oplus_{\boldsymbol{s} \in G} \mathcal{A}_{s}$ when G is a group or a monoid (be it commutative of not) with the very natural condition $\mathcal{A}_{s} \mathcal{A}_{t} \subset \mathcal{A}_{s t}$
(9) A tensor of $T_{n}\left(R_{1} \oplus R_{2}\right)$ (mind that this tensor can have $1_{R_{i}}$ as factors) of type $w \in\{r, b\}^{*}$ will be of the form

$$
\begin{equation*}
x_{1} \otimes \ldots \otimes x_{n} \tag{7}
\end{equation*}
$$

where, for all $k \leq n, x_{k} \in R_{i(w[k])}$ where $i=1$ if $w[k]=r$ and $i=2$ if $w[k]=b$.
(10) Likewise (and in general, because the at first the construction is linear in data) with $V=\oplus_{a \in A} V_{a}$, we have $T(V)=\oplus_{w \in A^{*}} T_{w}(V)$ and $T(V)$ is graded over A^{*}.
(1) Returning to the original problem and notations of slide 10, we see that generically, we have $x \otimes y \equiv x y$ (computed in R_{1}) and $x \otimes y \equiv x y$ (computed in R_{2}).

The MSE question/4

(12) We have then a very natural rewrite rule (Rules1)

$$
\begin{equation*}
P \otimes \underbrace{x_{i} \otimes x_{i+1}}_{\text {same colour }} \otimes S \rightarrow P\} \tag{8}
\end{equation*}
$$

(3) So, only "count" the reduced "alternating tensors" (which cannot be reduced) i.e. of type $w \in(r b)^{*} \sqcup(b r)^{*} \sqcup b(r b)^{*} \sqcup r(b r)^{*}$
(44) A second reduction rule occurs (Rules2) it is

$$
\begin{equation*}
P \otimes 1_{R_{i}} \otimes S \rightarrow P \otimes 1_{T\left(R_{1} \oplus R_{2}\right)} \otimes S \tag{9}
\end{equation*}
$$

(15) Then, we obtain

$$
\begin{equation*}
R_{1} * R_{2}:=T\left(R_{1} \oplus R_{2}\right) / \text { Rules } \tag{10}
\end{equation*}
$$

The MSE question/5

(00) For example with \mathbf{k} a (commutative) ring and $R_{1}=\mathbf{k}[X], R_{2}=\mathbf{k}[Y]$, we get $R_{1} * R_{2} \simeq \mathbf{k}\langle X, Y\rangle$ whereas $R_{1} \otimes R_{2} \simeq \mathbf{k}[X, Y]$.
(1) As remarked Darij Grinberg, in the discussion of the MSE question, it can happen that the factors may not embed in $R_{1} * R_{2}$ (precisely through j_{1}, j_{2}, see slide 10).
(B8) In fact, this already happens for the category CRing, where the (free) coproduct is the tensor product i.e. where the product is given by

$$
\begin{equation*}
\left(u_{1} \otimes v_{1}\right) \cdot\left(u_{2} \otimes v_{2}\right)=u_{1} v_{1} \otimes u_{2} \cdot v_{2} \tag{11}
\end{equation*}
$$

(10) For example $\mathbb{Z} / 3 . \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 2 . \mathbb{Z}=\{0\}$. This is due to torsion as

$$
\begin{aligned}
& u \otimes v=(3-2)(u \otimes v)=3(u \otimes v)-2(u \otimes v)= \\
& 3 u \otimes v-u \otimes 2 v=0
\end{aligned}
$$

a similar computation shows that $\mathbb{Z} / 3 . \mathbb{Z} *_{\mathbb{Z}} \mathbb{Z} / 2 \cdot \mathbb{Z}=\{0\}$ as $x=\left(3 j_{1}(1)-2 j_{2}(1)\right) x=0$

$$
U(R) \rightarrow U(\mathbb{Z}[U(R) \sqcup U(S)]) \leftarrow U(S) \text { lift to ring homomorphisms } R \rightarrow \mathbb{Z}[U(R) \sqcup U(S)] / I \leftarrow S \text {. }
$$

Home
Questions

Tags
Users
Unanswered

Share Cite Edit Follow Flag
 edited Jan 3 '14 at 15:27
 answered Jan 3 '14 at 14:29

A Is what you call 'algebraic structure' the same thing as 'algebraic system (of a given type)' mentioned in CWM on page
F120? By the way, you are of great help to me on this site. Not only in this question. Tibi gratias ago! - drhab Jan 3 '14 at 14:44

- Yes, exactly. CWM keeps this quite short (although very concise), you can find more about algebraic structures in texts

F| about universal algebra. - Martin Brandenburg Jan 3 ' 14 at 14:46
1 I don't think R and S embed into your coproduct in the sense of injective maps. Try $S=0$ and $R \neq 0$. - darij grinberg PJan 3 '14 at 15:25
@ @Darij: You are right, thank you. - Martin Brandenburg Jan 3 '14 at 15:27

1 It doesn't make sense to talk about $R \cap S$. And yes, R and S are completely isolated. - Martin Brandenburg Jun 25

- '15 at 12:59 -

Add a comment | Show 7 more comments

Your Answer

The MSE question/6

(20) We remark that if $R_{i}=\mathbb{Z} .1_{R_{i}} \oplus R_{i}^{+}$and R_{i}^{+}is closed by products (this amount to saying that $R \rightarrow \mathbb{Z} .1_{R_{i}}$ is a ring morphism i.e. that R_{i} are augmented).
(21) In this case (R_{i} are augmented), the making of $R_{1} * R_{2}$ is
(1) Compute $T\left(R_{1}^{+} \sqcup R_{2}^{+}\right) /$Rules $1=:\left(R_{1} * R_{2}\right)_{+}$
(2) Adjoint a unit and obtain

$$
\left(R_{1} * R_{2}\right):=\left(R_{1} * R_{2}\right)_{+} \oplus \mathbb{Z}
$$

as an augmented ring.

Concluding remarks and perspectives

(1) We constructed free products of rings.
(2) This construction holds mutatis mutandis for algebras (and then rings as a particular case considering that Ring $=\mathbb{Z}-\mathbf{A A U}$)
(3) These constructions are useful for twisted actions as differential polynomials and Ore algebras. They will be the object of a forthcoming CCRT.
(3) In this CCRT, we will explore also more general twisted actions as coloured tensor products in appropriate categories.

Thank you for your attention.

Links

(1) Categorical framework(s)
https://ncatlab.org/nlab/show/category
https://en.wikipedia.org/wiki/Category_(mathematics)
(2) Universal problems
https://ncatlab.org/nlab/show/universal+construction https://en.wikipedia.org/wiki/Universal_property
(3) Paolo Perrone, Notes on Category Theory with examples from basic mathematics, 181p (2020) arXiv:1912.10642 [math.CT]
https://en.wikipedia.org/wiki/Abstract_nonsense
(9) Heteromorphism
https://ncatlab.org/nlab/show/heteromorphism
(5) D. Ellerman, MacLane, Bourbaki, and Adjoints: A Heteromorphic Retrospective, David EllermanPhilosophy Department, University of California at Riverside

Links/2

(0) https://en.wikipedia.org/wiki/Category_of_modules
(O) https://ncatlab.org/nlab/show/Grothendieck+group
(8) Traces and hilbertian operators
https://hal.archives-ouvertes.fr/hal-01015295/document
(0) State on a star-algebra
https://ncatlab.org/nlab/show/state+on+a+star-algebra
(1) Hilbert module
https://ncatlab.org/nlab/show/Hilbert+module
[1] N. Bourbaki, Algebra I (Chapters 1-3), Springer 1989.
[2] N. Bourbaki, Algèbre, Chapitre 8, Springer, 2012.
[3] N. Bourbaki.- Lie Groups and Lie Algebras, ch 1-3, Addison-Wesley, ISBN 0-201-00643-X
[4] P. Cartier, Jacobiennes généralisées, monodromie unipotente et intégrales itérées, Séminaire Bourbaki, Volume 30 (1987-1988), Talk no. 687, p. 31-52
[5] M. Deneufchâtel, GD, V. Hoang Ngoc Minh and A. I. Solomon, Independence of Hyperlogarithms over Function Fields via Algebraic Combinatorics, 4th International Conference on Algebraic Informatics, Linz (2011). Proceedings, Lecture Notes in Computer Science, 6742, Springer.
[6] Jean Dieudonné, Foundations of Modern Analysis, Volume 2, Academic Press; 2nd rev edition (January 1, 1969)
[7] G. Duchamp, D.Krob, Free partially commutative structures, Journal of Algebra, 156, 318-359 (1993)
[8] GD, Quoc Huan Ngô and Vincel Hoang Ngoc Minh, Kleene stars of the plane, polylogarithms and symmetries, (pp 52-72) TCS 800, 2019, pp 52-72.
[9] GD, Darij Grinberg, Vincel Hoang Ngoc Minh, Three variations on the linear independence of grouplikes in a coalgebra, ArXiv:2009.10970 [math.QA] (Wed, 23 Sep 2020)
[10] Gérard H. E. Duchamp, Christophe Tollu, Karol A. Penson and Gleb A. Koshevoy, Deformations of Algebras: Twisting and Perturbations, Séminaire Lotharingien de Combinatoire, B62e (2010)
[11] GD, Nguyen Hoang-Nghia, Thomas Krajewski, Adrian Tanasa, Recipe theorem for the Tutte polynomial for matroids, renormalization group-like approach, Advances in Applied Mathematics 51 (2013) 345-358.
[12] K.T. Chen, R.H. Fox, R.C. Lyndon, Free differential calculus, IV. The quotient groups of the lower central series, Ann. of Math. , 68 (1958) pp. 81-95
[13] V. Drinfel'd, On quasitriangular quasi-hopf algebra and a group closely connected with $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$, Leningrad Math. J., 4, 829-860, 1991.
[14] M.E. Hoffman, Quasi-shuffle algebras and applications, arXiv preprint arXiv:1805.12464, 2018
[15] H.J. Susmann, A product expansion for Chen Series, in Theory and Applications of Nonlinear Control Systems, C.I. Byrns and Lindquist (eds). 323-335, 1986
[16] P. Deligne, Equations Différentielles à Points Singuliers Réguliers, Lecture Notes in Math, 163, Springer-Verlag (1970).
[17] M. Lothaire, Combinatorics on Words, 2nd Edition, Cambridge Mathematical Library (1997).
[18] Szymon Charzynski and Marek Kus, Wei-Norman equations for a unitary evolution, Classical Analysis and ODEs, J. Phys. A: Math. Theor. 46265208
[19] Rimhac Ree, Lie Elements and an Algebra Associated With Shuffles, Annals of Mathematics Second Series, Vol. 68, No. 2 (Sep., 1958)
[20] G. Dattoli, P. Di Lazzaro, and A. Torre, $S U(1,1), S U(2)$, and $S U(3)$ coherence-preserving Hamiltonians and time-ordering techniques. Phys. Rev. A, 35:1582-1589, 1987.
[21] J. Voight, Quaternion algebras, https://math.dartmouth.edu/~jvoight/quat-book.pdf
[22] Adjuncts in nlab.
https://ncatlab.org/nlab/show/adjunct
[23] M. van der Put, M. F. Singer.- Galois Theory of Linear Differential Equations, Springer (2003)
[24] Graded rings, see "Graded Rings and Algebras", see "G-graded rings and algebras" in https://en.wikipedia.org/wiki/Graded_ring
[25] How to construct the coproduct of two non-commutative rings https://math.stackexchange.com/questions/625874
[26] Definition of (commutative) free augmented algebras https://mathoverflow.net/questions/352726
[27] Closed subgroup (Cartan) theorem without transversality nor Lipschitz condition within Banach algebras https://mathoverflow.net/questions/356531
[28] Definition of augmented algebras (general) https://ncatlab.org/nlab/show/augmented+algebra
[29] Coproduct of two non commutative rings https://math.stackexchange.com/questions/625874

